## Endocrine Response after Trauma – Surgeon View

#### Prof. Marius JB Keel, MD, FACS

Vice-Chairman

General, Trauma and Orthopedic Surgeon - EBSQ Traumatology Head for Trauma, Pelvic and Spinal Surgery Department of Orthopedic and Trauma Surgery University Hospital Bern, INSELSPITAL **Bern, Switzerland** 



## **<b>WINSEL**SPITAL

UNIVERSITÄTSSPITAL BERN HOPITAL UNIVERSITAIRE DE BERNE BERN UNIVERSITY HOSPITAL

 $u^{t}$ 

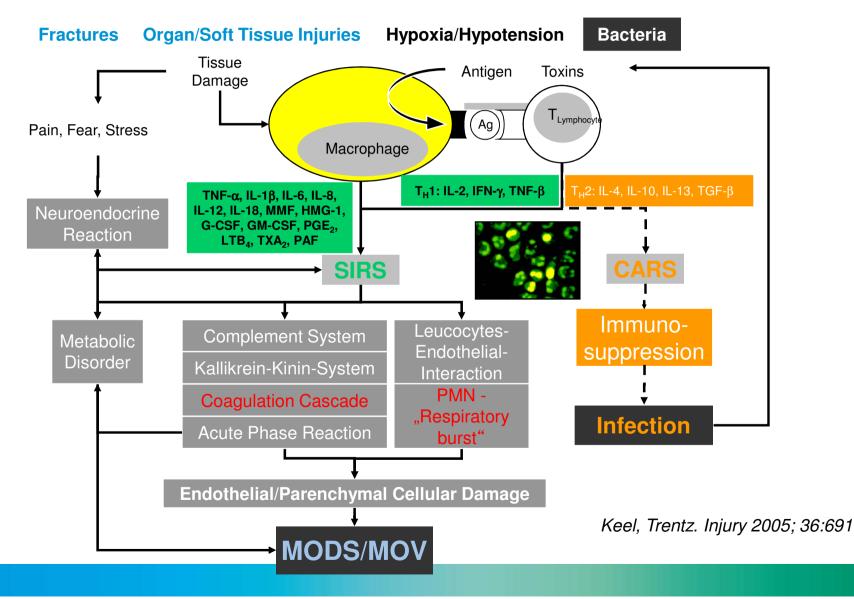
b UNIVERSITÄT BERN



## "Killers" in Polytrauma

#### Keel et al. *n*=1191, 1.96-9.04; *ISS*≥17pts.

- Head injury (66%)
- Hemorrhagic shock (21%)
- - Sepsis, MOF (13%)


- Nassive<br/>transfusion<br/>tansfusion<br/>tansfusion<br/>tansfusion<br/>tansfusion
  - Coagulopathy
    Dilution
    Consumption

## **Hemorrhagic Shock and Mortality**

| A                                  | <750ml<br>-           | 750-1500ml<br>>100/min. | III/IV<br>>1500/2000ml<br>>120/min.<br><90mmHg syst. |
|------------------------------------|-----------------------|-------------------------|------------------------------------------------------|
|                                    | n = 630<br><b>53%</b> | n = 368<br><b>31%</b>   | n = 193<br><b>16%</b>                                |
| Hypothermia<br>° celsius           | 35.5                  | 35.3                    | 34.2                                                 |
| Acidosis<br>lactate mmol/l         | 2.8                   | 3.5                     | 6.3                                                  |
| Coagulopathy<br>prothrombin time % | 83                    | 74<br>ethal Tri         | 57                                                   |
| Mortality (36%):                   | 28%                   | 33%                     | 67%                                                  |

Keel et al. **n=1191**, 1.96-9.04; ISS≥17pts.

#### **Pathophysiological Cascade**



## "Two Hit" – Model

## **First Hits**

Moore et al. J Trauma 1996;40:501 Keel, Trentz. Injury 2005;36:691

## **Second Hits**

- Endogen (antigenic):
- Hypoxia
- Hypotension, Acidosis
- Ischemia/Reperfusion
- Cellular detritus
- Contamination/Infection

#### Exogen (interventional):

- Surgery with blood loss, tissue damage, hypothermia
- Neglected/Missed injuries
- Prolonged diagnostic workup
- Massive transfusions

## Systemic Inflammatory Response Syndrome (SIRS)

-Temperature

-Hypoxia

-Hypotension

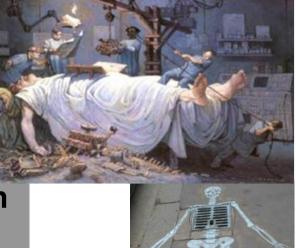
-Fractures

-Organ injuries

-Soft tissue injuries

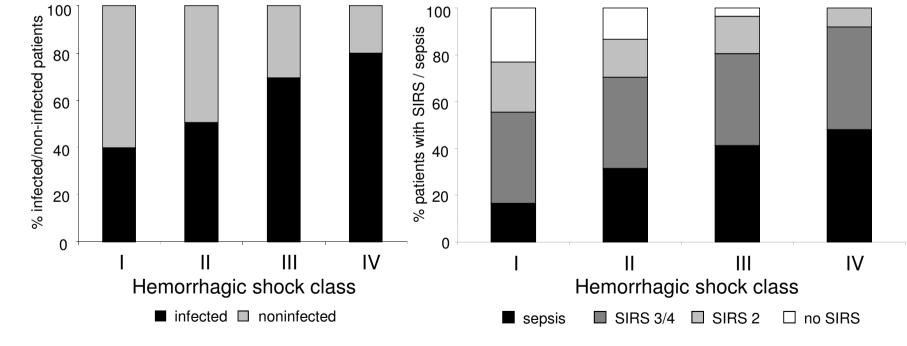
- Pulse Crit Care Med - Breathing <sup>1992;20:864</sup>
- -breating




- reversible Multiple Organ Dysfunction
 Syndrome (MODS)



+Bacteria Host Defense Failure Disease - irreversible -


Host Defense Response

Multiple Organ Failure (MOF)



#### **Hemorrhagic Shock – Morbidity**

- Inclusion: ISS ≥17 pts., survival >72 hrs
- N=972 (age: 40.2 y; ISS: 31.9 pts.; late mortality: 10.5%; blunt trauma: 91.4%)
- Hemorrhagic shock: I (n=582) II (n=309) III (n=56) IV (n=25)

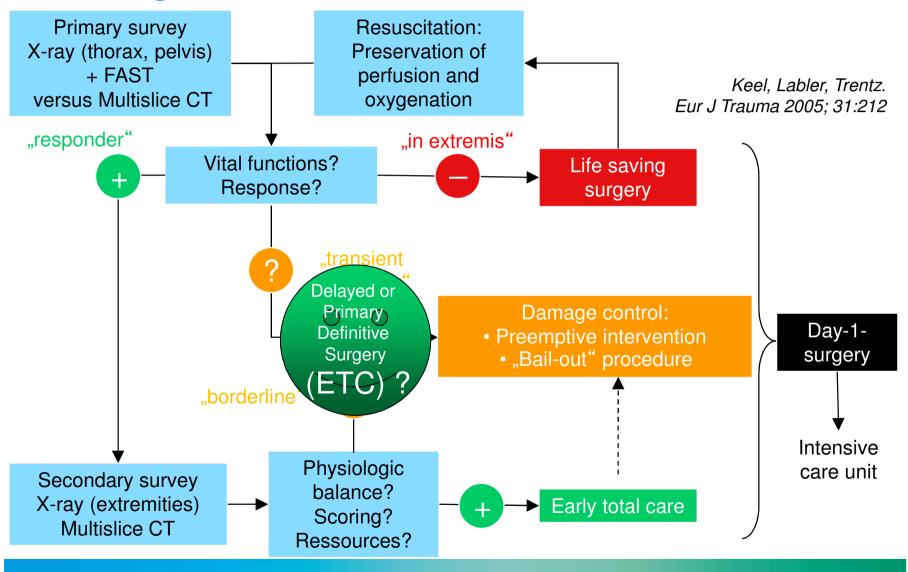


Lustenberger et al. Eur J Trauma Emerg Surg 2009

#### **Damage Control – History – US Navy**

 ...keeping afloat a badly damaged ship by procedures to limit flooding, stabilize the vessel, isolate fires and explosions and avoid their spreading...




## **History: Damage Control Surgery**

- Pringle-maneuver Pringle. Ann Surg. 1908; 48:541
- Intra-abdominal packing

Feliciano et al. J Trauma. 1981; 21:285

- Damage Control as approach Rotondo et al. J Trauma. 1993; 35:375
- Early packing outcome Garrison et al. J Trauma. 1996; 40:923
- Timing of fracture treatment DCO (Damage Control Orthopedic Surgery) Pape et al. Am J Surg. 2002; 183:622

## **Strategies of Trauma Care**



## **Classification of Severely Injured Patients**

| Shock:                                                                                                                       | Stable                                     | Borderline                                         | Unstable                                     | In Extremis                             |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|----------------------------------------------|-----------------------------------------|
| Blood pressure (mmHg)<br>Blood units<br>Lactate<br>Urine output (mL/h)                                                       | >100<br>0-2<br>normal range<br>>150        | 80-100<br>2-8<br>approx 2.5<br>50-150              | 60-90<br>5-15<br>>2.5<br><100                | <50-60<br>>15<br>severe acidosis<br><50 |
| Coagulation:<br>Platelet (/mL)<br>Fibrinogen (g/dL)<br>D-Dimer                                                               | >110,000<br>>1<br>normal range             | 90,000-110,000<br>approx. 1<br>abnormal            | <70,000-90,000<br><1<br>abnormal             | <70,000<br>DIC<br>DIC                   |
| Temperature:<br>(°Celsius)                                                                                                   | >34                                        | 33-35                                              | 30-32                                        | <30                                     |
| <b>Injuries:</b><br>Lung function (PaO2/FiO2)<br>Chest (AIS)<br>Abdominal (Moore)<br>Pelvic trauma (AO)<br>Extremities (AIS) | >350<br>1 oder 2<br><= II<br>A<br>1 oder 2 | 300<br>2 oder >2<br><= III<br>B oder C<br>2 oder 3 | 200-300<br>2 oder >2<br>III<br>C<br>3 oder 4 | <200<br>3 oder >3<br>IV<br>C<br>Crush   |

Pape, Giannoudis, Krettek, Trentz. JOT 2005; 19:551

# Damage control in severely injured trauma patients – A ten-year experience

Andreas Frischknecht, Thomas Lustenberger<sup>1</sup>, Marko Bukur<sup>1</sup>, Matthias Turina, Adrian Billeter, Ladislav Mica, Marius Keel<sup>2</sup>

Department of Surgery, Hospital Uster, Switzerland, <sup>1</sup>Department of Surgery, Division of Trauma and Critical Care, Los Angeles County + University of Southern California Medical Center, Los Angeles, CA, <sup>2</sup>Department of Surgery, Division of Trauma Surgery, University Hospital Zurich, Switzerland





Journal of Emergencies, Trauma, and Shock

Synergizing Basic Science, Clinical Medicine, & Global Health

| characteristic                             | •                                |                                     | U 1                             |            |
|--------------------------------------------|----------------------------------|-------------------------------------|---------------------------------|------------|
| Clinical/<br>demographic<br>characteristic | All patients<br>( <i>n</i> =319) | Early survivors<br>( <i>n</i> =267) | Early deaths<br>( <i>n</i> =52) | P<br>value |
| Age (years),<br>mean±SEM                   | 39.3±1.0                         | 38.5±1.0                            | 43.2±2.9                        | 0.076      |
| Age ≥55 years                              | 19.4% (62/319)                   | 17.2% (46/267)                      | 30.8% (16/52)                   | 0.024      |
| Male                                       | 71.8% (229/319)                  | 71.9% (192/267)                     | 71.2% (37/52)                   | 0.912      |
| Penetrating MOI                            | 8.8% (28/319)                    | 9.0% (24/267)                       | 7.7% (4/52)                     | 1.000      |
| GC5 ≤ 8                                    | 55.7% (176/316)                  | 50.0% (133/266)                     | 86.0% (43/50)                   | <0.001     |
| SBP < 90 mmHg                              | 8.7% (26/299)                    | 7.1% (18/253)                       | 17.4% (8/46)                    | 0.041      |
| ISS, mean±SEM                              | 36.6±0.7                         | 35.3±0.7                            | 43.4±2.1                        | <0.001     |
| ISS ≥ 25                                   | 85.6% (273/319)                  | 84.3% (225/267)                     | 92.3% (48/52)                   | 0.131      |
| Head AIS ≥ 3                               | 47.6% (152/319)                  | 43.1% (115/267)                     | 71.2% (37/52)                   | <0.001     |
| Chest AIS $\ge 3$                          | 58.9% (188/319)                  | 57.3% (153/267)                     | 67.3% (35/52)                   | 0.180      |
| Abdomen AIS $\geq 3$                       | 65.8% (210/319)                  | 65.9% (176/267)                     | 65.4% (34/52)                   | 0.941      |
| Extremity AIS $\ge 3$                      | 67.1% (214/319)                  | 68.9% (184/267)                     | 57.7% (30/52)                   | 0.115      |

Table 1. Comparison of alinical and demographic

MOI: MECHANISM OF INJURY; GCS: GLASGOW COMA SCALE; SBP: SYSTOLIC BLOOD PRESSURE; ISS: INJURY SEVERITY SCORE; AIS: ABBREVIATED INJURY SCALE; SEM: STANDARD ERROR OF THE MEAN

| Table 2: Dama<br>319 patients        | ge control p                     | procedures p                        | erformed in                     | n          |
|--------------------------------------|----------------------------------|-------------------------------------|---------------------------------|------------|
| Damage control<br>procedure          | All patients<br>( <i>n</i> =319) | Early survivors<br>( <i>n</i> =267) | Early deaths<br>( <i>n</i> =52) | P<br>value |
| Chest                                |                                  |                                     |                                 |            |
| Intrathoracic packing                | 4.7% (15/319)                    | 4.1% (11/267)                       | 7.7% (4/52)                     | 0.280      |
| Abdomen                              |                                  |                                     |                                 |            |
| Intra-abdominal<br>packing           | 25.7% (82/319)                   | 22.5% (60/267)                      | 42.3% (22/52)                   | 0.003      |
| Retroperitoneal packing              | 6.9% (22/319)                    | 4.9% (13/267)                       | 17.3% (9/52)                    | 0.004      |
| Pelvis                               |                                  |                                     |                                 |            |
| C-Clamp                              | 10.3% (33/319)                   | 9.7% (26/267)                       | 13.5% (7/52)                    | 0.420      |
| External fixation                    | 2.5% (8/319)                     | 2.6% (7/267)                        | 1.9% (1/52)                     | 1.000      |
| Extremities                          |                                  |                                     |                                 |            |
| External fixation                    | 60.5% (193/319)                  | 64.4% (172/267)                     | 40.4% (21/52)                   | 0.001      |
| External fixation<br>upper extremity | 13.5% (43/319)                   | 14.2% (38/267)                      | 9.6% (5/52)                     | 0.372      |
| External fixation<br>lower extremity | 53.6%<br>(171/319)               | 57.7% (154/267)                     | 32.7% (17/52)                   | 0.001      |

## Table 4: Independent risk factors at hospital admission for early mortality in patients undergoing damage control management

| Variable               | Odds ratio (95% CI) | <i>P</i> value | R²    |
|------------------------|---------------------|----------------|-------|
| INR >1.2               | 10.64 (1.32-83.33)  | 0.026          | 0.184 |
| Base deficit >3 mmol/L | 4.85 (1.10-23.81)   | 0.040          | 0.111 |
| AIS head ≥3            | 4.27 (1.55-11.76)   | 0.005          | 0.051 |
| Body temperature <35°C | 3.68 (1.15-11.76)   | 0.029          | 0.044 |
| Lactate >6 mmol/L      | 2.96 (1.00-9.09)    | 0.050          | 0.032 |
| Hemoglobin <7 g/dL     | 2.76 (1.02-7.46)    | 0.045          | 0.031 |

VARIABLES IN THE EQUATION: HEMOGLOBIN <7 G/DL, HEMATOCRIT < 20%, PH <7.3, AIS HEAD/ CHEST/EXTREMITY ≥3, ISS ≥ 25, AGE ≥55 YEARS, SYSTOLIC BLOOD PRESSURE <90 MMHG, INR >1.2, BASE DEFICIT >3 MMOL/L, BODY TEMPERATURE <35°C, LACTATE >6 MMOL/L. INR: INTERNATIONAL NORMALIZED RATIO; AIS: ABBREVIATED INJURY SCALE; CI: CONFIDENCE INTERVAL; C: CELSIUS; ISS: INJURY SEVERITY SCORE

## Table 5: Independent risk factors at ICU admission for early mortality in patients undergoing damage control management

| Variable                             | Odds ratio (95% CI)             | <i>P</i> value  | R²      |
|--------------------------------------|---------------------------------|-----------------|---------|
| Lactate > 4 mmol/L                   | 8.70 (1.81-41.67)               | 0.007           | 0.260   |
| PRBC transfusion > 10 Units          | 7.14 (1.29-40.00)               | 0.025           | 0.113   |
| VARIABLES IN THE EQUATION: BASE DEFI | icit >6 mmol/L, INR >1.2, Plate | let count <75,  | РН<7.3, |
| Lactate >4 mmol/L, PRBC transfusio   | on >10 Units, Operation time >  | 120 MINUTES. IC | CU:     |
| INTENSIVE CARE UNIT; PRBC: PACKED R  | ED BLOOD CELLS; CI: CONFIDENCE  | INTERVAL        |         |

## **Damage Control Concept – Limitations of Second Hits**



## Stop the bleeding – Life Saving Surgery Damage Control Surgery (DCO)

- Surgical control of hemorrhage
- Angiographic control of hemorrhage (Transcatheter arterial embolisation (TAE))

## Mitigate the lethal triad – Damage Control Resuscitation

- Massive transfusion protocols (MTPs)
- Correction of coagulopathy
- Correction of hypothermia

## **Definitive Treatment of Trauma**

## Immune response -Window of opportunity





Disease

## **Multidisciplinary approach**

#### Influence of Age on Damage Control Surgery ?

#### Impact of Advanced Age on Outcomes Following Damage Control Interventions for Trauma World J Surg 2011

Thomas Lustenberger · Peep Talving · Beat Schnüriger · Barbara M. Eberle · Marius J. B. Keel

## **Increased mortality !**

Table 5 Overall mortality and mortality in DC subgroups

| Groups         | Total          | ≥55 years     | <55 years    | Р       | OR (95% CI)         | Adj. P             | Adj. OR (95% CI)               |
|----------------|----------------|---------------|--------------|---------|---------------------|--------------------|--------------------------------|
| Overall        | 10.1% (16/158) | 29.4% (10/34) | 4.8% (6/124) | < 0.001 | 8.19 (2.72 - 24.70) | $0.001^{a}$        | 7.09 (2.30-21.74) <sup>a</sup> |
| Damage control |                |               |              |         |                     |                    |                                |
| Extremity      | 6.7% (8/119)   | 19.2% (5/26)  | 3.2% (3/93)  | 0.012   | 7.14 (1.58-32.27)   | 0.032 <sup>b</sup> | 5.95 (1.16-30.30) <sup>b</sup> |
| Pelvis         | 18.5% (5/27)   | 25.0% (2/8)   | 15.8% (3/19) | 0.616   | 1.78 (0.24-13.41)   | _c                 |                                |
| Laparotomy     | 18.9% (7/37)   | 55.6% (5/9)   | 7.1% (2/28)  | 0.005   | 16.25 (2.32-114.06) | _c                 | _c                             |

OR odds ratio; CI confidence interval; Adj. adjusted

<sup>a</sup> Adjusted for external fixator lower extremity, fibrinogen 24 h

<sup>b</sup> Adjusted for external fixator lower extremity, systolic blood pressure <90 mmHg

c No statistically significant confounders between the compared groups

#### Impact of Advanced Age on Outcomes Following Damage Control Interventions for Trauma World J Surg 2011

Thomas Lustenberger · Peep Talving · Beat Schnüriger · Barbara M. Eberle · Marius J. B. Keel

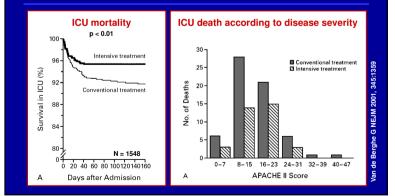
## Identical morbidity if surviving the early course !

| Table 4 Clinical outcomes for<br>elderly and young trauma<br>patients undergoing DC | Clinical outcome                        | Total $(n = 158)$ | $\geq$ 55 years ( $n = 34$ ) | <55 years<br>( <i>n</i> = 124) | Р     |
|-------------------------------------------------------------------------------------|-----------------------------------------|-------------------|------------------------------|--------------------------------|-------|
| procedures                                                                          | Ventilator days (survivors), mean ± SEM | $7.0 \pm 0.6$     | $7.3 \pm 1.7$                | $6.9 \pm 0.7$                  | 0.735 |
|                                                                                     | SICU LOS (survivors) (days), mean ± SEM | $12.9 \pm 1.0$    | $14.7 \pm 2.9$               | $12.6 \pm 1.0$                 | 0.402 |
|                                                                                     | Hospital LOS (days), mean ± SEM         |                   |                              |                                |       |
|                                                                                     | Survivors                               | $40.6 \pm 2.2$    | $41.2 \pm 4.5$               | $40.4 \pm 2.5$                 | 0.409 |
|                                                                                     | Nonsurvivors                            | $9.1 \pm 3.0$     | $11.6 \pm 4.3$               | $5.0 \pm 3.6$                  | 0.147 |
|                                                                                     | SIRS                                    |                   |                              |                                |       |
|                                                                                     | 0                                       | 13.9% (22)        | 11.8% (4)                    | 14.5% (18)                     | 0.787 |
|                                                                                     | 2                                       | 27.2% (43)        | 26.5% (9)                    | 27.4% (34)                     | 0.912 |
|                                                                                     | 3/4                                     | 32.9% (52)        | 38.2% (13)                   | 31.5% (39)                     | 0.456 |
|                                                                                     | Sepsis                                  | 25.9% (41)        | 23.5% (8)                    | 26.6% (33)                     | 0.716 |
|                                                                                     | Overall infection                       | 47.5% (75)        | 52.9% (18)                   | 46.0% (57)                     | 0.471 |
|                                                                                     | Pneumonia                               | 23.4% (37)        | 26.5% (9)                    | 22.6% (28)                     | 0.635 |
|                                                                                     | Wound infection                         | 25.9% (41)        | 20.6% (7)                    | 27.4% (34)                     | 0.421 |
|                                                                                     | Intraabdominal abscess                  | 7.0% (11)         | 5.9% (2)                     | 7.3% (9)                       | 1.000 |
| SICU surgical intensive care<br>unit; LOS length of stay; SIRS                      | Acute renal failure                     | 3.2% (5)          | 5.9% (2)                     | 2.4% (3)                       | 0.293 |
| systemic inflammatory response                                                      | Deep venous thrombosis                  | 5.1% (8)          | 5.9% (2)                     | 4.8% (6)                       | 0.682 |
| syndrome; ARDS acute                                                                | ARDS                                    | 1.9% (3)          | 0% (0)                       | 2.4% (3)                       | 1.000 |
| respiratory distress syndrome;<br>MOF multiple organ failure                        | MOF (Goris $\geq 6$ )                   | 37.3% (59)        | 47.1% (16)                   | 34.7% (43)                     | 0.186 |

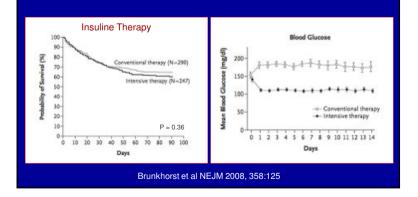
## Trauma Leader in

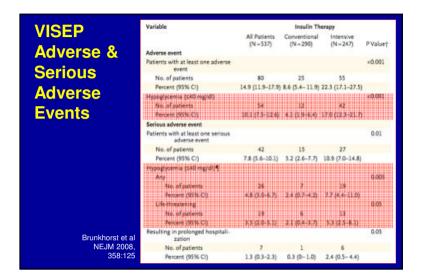
- Acute Care
- Definitive Care
- Emergency Physician
- Acute care (general) surgeon
- Trauma surgeon (Unfallchirurg)
- · Abdominal surgeon
- Orthopedic trauma surgeon
- Anesthesist
- ICU

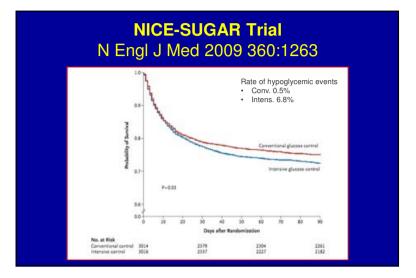


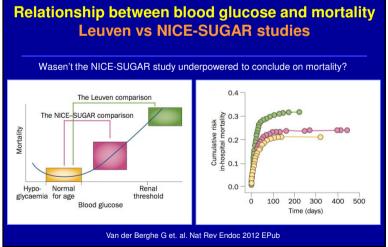




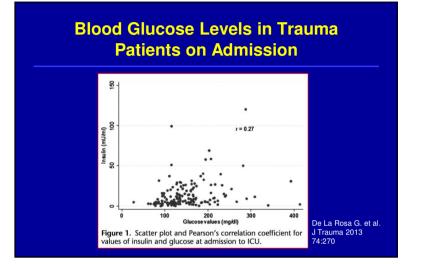


University Hospital Zurich



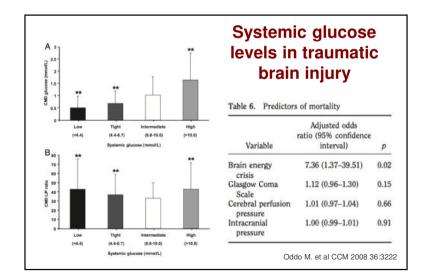


#### Glycemic control (< 110 mg/dl) in post cardiac surgery ICU patients

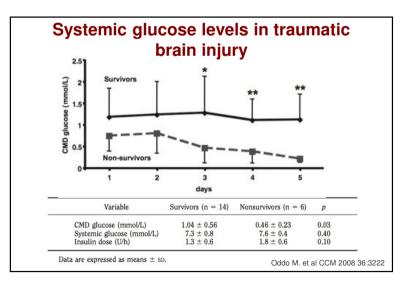


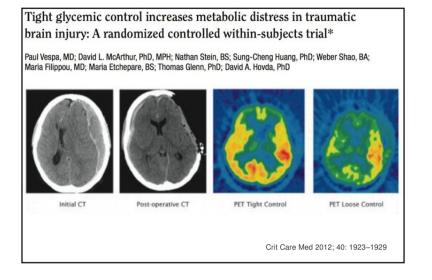

#### Insuline Therapy in Severe Sepsis Brunkhorst et al NEJM 2008, 358:125

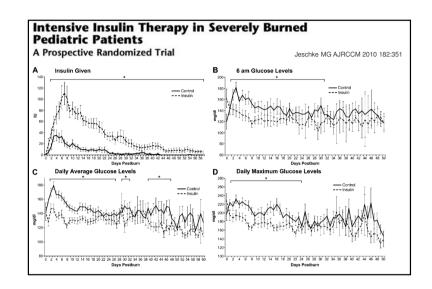


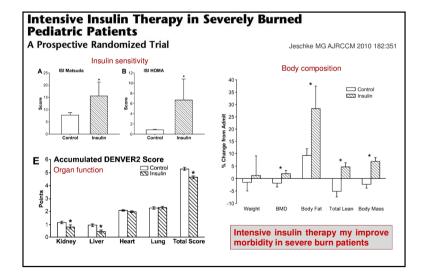


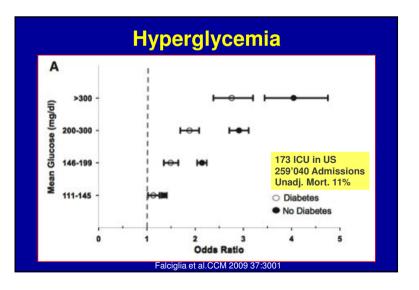



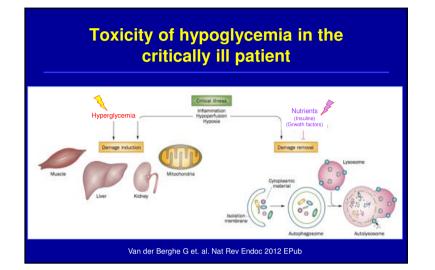





| Subgroup            | Intensive<br>Control<br>(N=3010) | Conventional<br>Control<br>(N=3012) |                                               | Ratio for Death (95% CI)                      | P Value for<br>Heterogeneity             |
|---------------------|----------------------------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------|
|                     | no. of deaths/no                 | with data availab                   | Ne                                            |                                               | 8779737878787878787878787878787878787878 |
| Operative admission |                                  |                                     |                                               |                                               | 0.10                                     |
| Yes                 | 272/1111                         | 222/1121                            |                                               |                                               | (1.07-1.61)                              |
| No                  | 557/1898                         | 529/1891                            |                                               | 1.07                                          | (0.93-1.23)                              |
| Diabetes            |                                  |                                     | 1                                             |                                               | 0.60                                     |
| Yes                 | 195/615                          | 165/596                             |                                               | . 1.21                                        | (0.95-1.55)                              |
| No                  | 634/2394                         | 586/2416                            | -                                             | 1.12                                          | (0.99-1.28)                              |
| Severe sepsis       |                                  |                                     | · •                                           |                                               | 0.93                                     |
| Yes                 | 202/673                          | 172/626                             |                                               | • LB                                          | (0.89-1.44)                              |
| No                  | 627/2335                         | 579/2386                            | -                                             | 1.15                                          | (1.01-1.31)                              |
| Trauma              |                                  |                                     |                                               |                                               | 0.07                                     |
| Yes                 | 41/421                           | 57/465 -                            |                                               | 0.77                                          | (0.50-1.18)                              |
| No                  | 788/2587                         | 694/2547                            | 1.                                            | 1.17                                          | (1.04-1.32)                              |
| APACHE II score     |                                  |                                     |                                               |                                               | 0.84                                     |
| k25                 | 386/927                          | 363/944                             | -                                             | L14                                           | (0.95-1.37)                              |
| <25                 | 442/2080                         | 387/2066                            | -                                             | - 1.17                                        | (1.01-1.36)                              |
| Corticosteroids     |                                  |                                     |                                               |                                               | 0.06                                     |
| Yes                 | 134/392                          | 140/378                             |                                               | 0.88                                          | (0.66-1.19)                              |
| No                  | 695/2616                         | 611/2634                            |                                               | 1.20                                          | (1.06-1.36)                              |
| VI deaths at day 90 | 829/3010                         | 751/3012                            | -                                             | <b>1</b> .14                                  | (1.02-1.28) 0.02                         |
|                     |                                  |                                     | 0.6 0.8 1.0<br>Intensive<br>Control<br>Better | 12 14 16<br>Conventional<br>Control<br>Better |                                          |





| TABLE 2. Logistic Regression Analy        | ysis for In-Hospital Mortality |                              |               |
|-------------------------------------------|--------------------------------|------------------------------|---------------|
|                                           | Simple Logistic Regression     | Multiple Logistic Regression | 8             |
| Variable                                  | OR (95% CI)                    | OR (95% CI)                  | p (Wald test) |
| Insulin level, µU/mL                      |                                |                              |               |
| 5-15                                      | 1 (Reference)                  |                              |               |
| <5                                        | 2.14 (0.93-4.95)               | 1.68 (0.62-4.54)             | 0.233         |
| >15                                       | 3.89 (1.60-9.44)               | 3.58 (1.18-10.84)            | 0.016         |
| Intensive therapy with insulin            | 0.82 (0.43-1.56)               | 0.80 (0.36-1.77)             | 0.448         |
| Age (each year)                           | 1.01 (1.00-1.03)               | 1.00 (0.99-1.02)             | 0.492         |
| Sex, male                                 | 0.43 (0.22-0.85)               | 0.58 (0.26-1.29)             | 0.257         |
| History of diabetes                       | 0.76 (0.19-3.07)               | 0.23 (0.04-1.28)             | 0.317         |
| APACHE II (each point)                    | 1.07 (1.02-1.13)               | 1.05 (0.99-1.11)             | 0.651         |
| SOFA score (each point)                   | 1.01 (0.99-1.02)               | 1.01 (0.98-1.02)             | 0.773         |
| Blood glucose at admission, mg/dL         | 1.00 (1.00-1.01)               | 1.00 (1.00-1.01)             | 0.052         |
| Creatinine at admission, mg/dL            | 0.96 (0.79-1.16)               | 0.78 (0.56-1.08)             | 0.176         |
| Diagnosis of sepsis                       | 2.61 (1.26-5.37)               | 2.42 (1.03-5.65)             | 0.020         |
| ICU admission (each hour)                 | 1.12 (0.99-1.27)               | 1.08 (0.94-1.23)             | 0.435         |
| Hypoglycemia (≤40 mg/dL)                  | 1.85 (0.36-9.49)               | 1.80 (0.27-11.6)             | 0.585         |
| Variability of blood glucose (each unit)* | 1.04 (1.01-1.06)               | 1.04 (1.01-1.07)             | 0.010         |
| HOMA (each unit) <sup>†</sup>             | 1.03 (0.99-1.07)               | 0.99 (0.94-1.04)             | 0.495         |

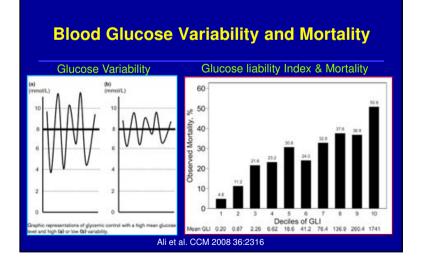


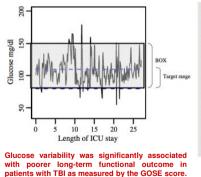






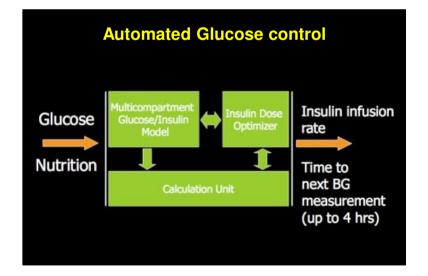


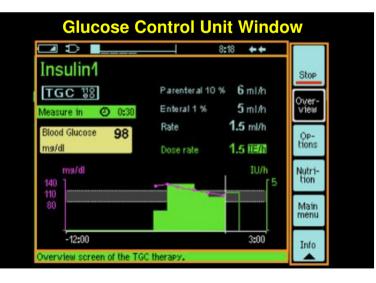


#### **Toxicity of hyperglycemia**

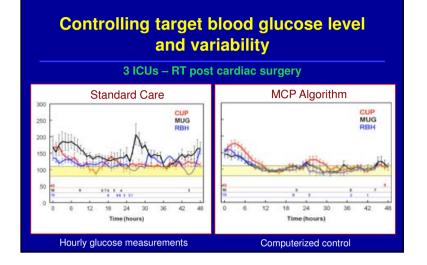
#### • Possible factors

- > Oxydative stress
- > Endothelial dysfunction
  - enhanced polyol activity, causing sorbitol and fructose
    accumulation
  - increased formation of advanced glycation end products
  - activation of protein kinase C and nuclear factor-kappa-B
  - increased hexosamine pathway flux
- Enhance monocyte adhesion to endothelial cells
- Induce apoptosis




Glucose variability negatively impacts long-term functional outcome in patients with traumatic brain injury<sup>分,分分</sup> Kazuhide Matsushima MD<sup>a,\*</sup>, Monica Peng BS<sup>b</sup>, Carlos Velasco BS<sup>b</sup>, Eric Schaefer MS<sup>c</sup>, Ramon Diaz-Arrastia MD, PhD<sup>d</sup>, Heidi Frankel MD, FACS, FCCM<sup>e</sup>





| 1.26) .59<br>2.46) .34<br>2.12) .00 | 04 0.76<br>9 0.74<br>4 0.74 |
|-------------------------------------|-----------------------------|
| 1.26) .59<br>2.46) .34<br>2.12) .00 | 9 0.74<br>4 0.74            |
| 2.46) .34<br>2.12) .00              | 4 0.74                      |
| 2.12) .00                           |                             |
|                                     |                             |
|                                     | 04 0.76                     |
| .34) .39                            | 9 0.74                      |
|                                     | 02 0.76                     |
| 8.65) .00                           | 02 0.76                     |
| 1.67) .01                           | 7 0.75                      |
| 2.63) .00                           | 02 0.77                     |
|                                     | l.67) .0                    |

| Blood glucose                | Incidence<br>(%) |                  | I mortality<br>95% CI) |
|------------------------------|------------------|------------------|------------------------|
|                              |                  | Crude            | Adjusted <sup>§</sup>  |
| arly hypoglycemia            |                  |                  |                        |
| Two episodes                 | 1409 (2.1)       | 2.7 (2.4 to 3.0) | 2.2 (1.9 to 2.5)       |
| One episode only             | 7713 (11.7)      | 1.7 (1.6 to 1.8) | 1.2 (1.1 to 1.3)       |
| No hypoglycemia <sup>4</sup> | 57062 (86.2)     | 1.0              | 1.0                    |
| G variability                |                  |                  |                        |
| BG variability               | 1913 (2.9)       | 2.4 (2.1 to 2.6) | 1.4 (1.3 to 1.5)       |
| Hypoglycemia                 | 7209 (10.97)     | 1.7 (1.6 to 1.8) | 1.2 (1.0 to 1.4)       |
| Neither <sup>¶</sup>         | 57062 (86.2)     | 1.0              | 1.0□                   |

# Manual arterial Image: Computer ized Glucose Control Manual arterial Image: Computer ized Glucose Contro <







#### Comparison with an other Study center using the same device

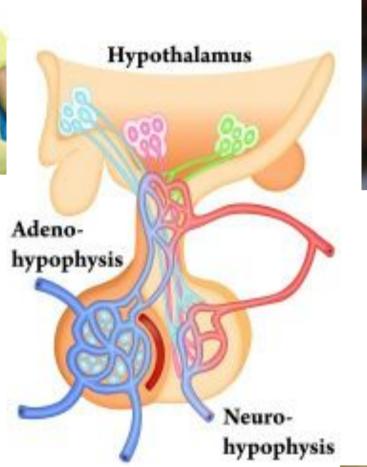
TABLE 2. GLUCOSE CONTROL (PERCENTAGE OF TIME WITHIN BLOOD GLUCOSE RANGES AND MEAN ARTERIAL BLOOD GLUCOSE LEVEL) AND SAMPLING INTERVAL FOR INDIVIDUAL STUDY DAYS AND OVERALL

|                          | Sampling<br>interval (h)                 |  |
|--------------------------|------------------------------------------|--|
| Mean glucose<br>(mmol/L) |                                          |  |
| 7.6±0.9                  | 1.6±0.3                                  |  |
| 6.9±0.9                  | $2.3 \pm 0.8$                            |  |
| $6.8 \pm 0.7$            | $2.2 \pm 0.6$                            |  |
| $6.8 \pm 1.0$            | $2.2 \pm 0.7$                            |  |
| 6.6±0.6                  | $2.3 \pm 0.6$                            |  |
| $6.7 \pm 0.6$            | $2.2 \pm 0.5$                            |  |
| 6.8±0.5                  | $2.1 \pm 0.6$                            |  |
| 6.7±0.3                  | $2.1 \pm 0.4$                            |  |
| $6.8 \pm 0.4$            | $2.0 \pm 0.4$                            |  |
|                          | 6.6±0.6<br>6.7±0.6<br>6.8±0.5<br>6.7±0.3 |  |

Data are mean ±SD values.

Amrein K Diab Tech & Terap 2012

Insulin Therapy in the ICU what should we aim for?


- Target
  - > General: 6 9 mmol/l (108 160 mg/dl)
  - > to be adapted in selected groups of ICU patients
    - Cardiac surgery patients with parenteral nutrition
    - Brain trauma patients
    - Burn patients
  - > Decrease blood glucose variability
- Close-loop glycemic control
  - > Control for hypo- and hyperglycemic events
  - > Decrease blood glucose variability

## Endocrine response after trauma – the endocrinologists' perspective focus on pituitary function

Bern 28.2.2014 Dr. Paul Kirchner Oberarzt Poliklinik für Endokrinologie und Diabetologie Inselspital Bern











## Case report 1



- 37yr old nurse, one daughter (10 yrs)
- hospitalisation due to abdominal pain, vomiting
  - labor
    - Sodium 123mmol/l, Cortisol 42nmol/l
    - TSH 2.7mU/I (0.35-4.5)
  - MRI: empty sella
- 2 weeks later on Endocrinology outpatient clinic
  - no symptoms with 30mg hydrocortisone/day
  - labor
    - fT4 7.3 pmol/l (9.5-25), fT3 1.5pmol/l (2.9-6.5)
    - Oestradiol < 20pmol/l, LH 4.7 U/l, FSH 12.5 U/l
    - IGF1 <25ng/ml (94-252)
  - after delivery 10 years ago
    - heavy bleeding, severe headache, breastfeeding not possible
    - oligo-/amenorhea, fatigue, diminshed physical strength
- Anterior Pituitary Insufficiency with subtle onset after Sheehan Syndrom



- cortisol deficiency is a cause of hyponatremia
- recognition of symptomatic pituitary insufficiency could be difficult
- ischemia is a possible reason for pituitary insufficiency



## Wie harmlos sind Kopfbälle? Hypogonadotroper Hypogonadismus nach leichten Schädel-Hirn-Traumata bei einem Profi-Fußballspieler

Isolated gonadotropic deficiency after multiple concussions in a professional soccer player

Autoren

M. Auer G.K. Stalla A.P. Athanasoulia

Institut

Abteilung für Innere Medizin, Endokrinologie und Diabetes, Max-Planck-Institut für Psychiatrie, München

Dtsch Med Wochenschr 2013

## Case report 2



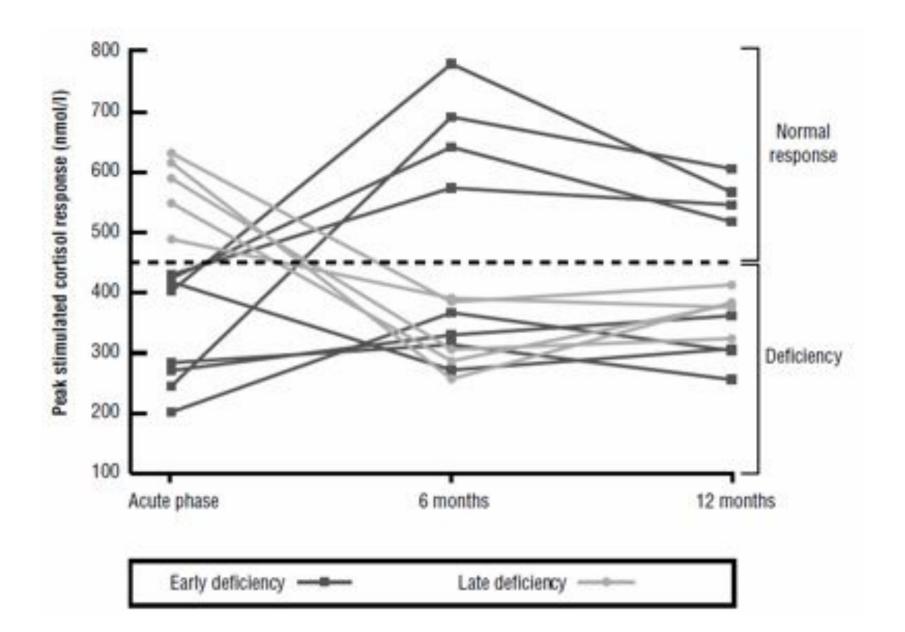
- 29yr old soccer professional
- diminshed physical strength over the last years, libido loss, erectile dysfunction
- testis each about 10ml
- labor
  - testosterone total 2.9nmol/l (12-22)
  - LH 1.3 U/I (1.7-8.6)
  - FSH 8.4 U/I(1.5-12.4)
- other pituitary function normal
- MRI sella: normal
- Frequency of headers (500 per week) as cause of hypogonadotropic hypogonadism?



- cortisol deficiency is a cause of hyponatremia
- recognition of symptomatic pituitary insufficiency could be difficult
- ischemia is a possible reason for pituitary insufficiency
- shearing lesions after (repetitive) concussions are discussed as a possible reason for pituitary insufficiency
- one low value does not define a hormone deficiency






| Source                                  |                  | No. (%) [95% CI]                        |                        |                                |                        |                       |                          |  |  |  |  |
|-----------------------------------------|------------------|-----------------------------------------|------------------------|--------------------------------|------------------------|-----------------------|--------------------------|--|--|--|--|
|                                         | No. of<br>Adults | Growth<br>Hormone                       | LH/FSH                 | Adrenocorticotropic<br>Hormone | TSH                    | Hypopituitarism       | Multiple<br>Deficiencies |  |  |  |  |
| TBI                                     |                  | 0.0000000000000000000000000000000000000 |                        | 1000.0000000                   |                        | 59993933312179035     |                          |  |  |  |  |
| Bondanelli et<br>al, <sup>12</sup> 2004 | 50               | 4 (8.0)<br>(0.5-15.5)                   | 7 (14.0)<br>[4.4-23.6] | 0                              | 5 (10.0)<br>[1.7-18.3] | 14 (28.0) [15.6-40.5] | 6 (12.0)<br>[3.0-21.0]   |  |  |  |  |
| Aimaretti et al. <sup>14</sup>          | 70               | 14 (20.0)                               | 8 (11.4)               | 5.(6.7)                        | 4 (7.1)                | 16 (22.9)             | 7 (10.0)                 |  |  |  |  |
| 2005                                    |                  | [10.6-29.4]                             | [4.0-18.9]             | [0.3-11.2]                     | [1.1-13.2]             | [13.0-32.7]           | [3.0-17.0]               |  |  |  |  |
| Agha et al, <sup>16,16</sup>            | 102              | 11 (10.8)                               | 12 (11.8)              | 13 (12.7)                      | 1 (1.0)                | 29 (28.4)             | 6 (5.9)                  |  |  |  |  |
| 2004                                    |                  | [4.8-16.8]                              | [5.5-18.0]             | [6.3-19.2]                     | [0-2.9]                | [19.7-37.2]           | [1.3-10.5]               |  |  |  |  |
| Popovic et al, <sup>17</sup>            | 67               | 10 (14.9)                               | 6 (9.0)                | 5 (7.5)                        | 3 (4.5)                | 23 (34.3)             | .7 (10.4)                |  |  |  |  |
| 2004                                    |                  | [6.4-23.5]                              | [2.1-15.8]             | [1.2-13.8]                     | [0-9.4]                | (23.0-45.7)           | [3.1-17.8]               |  |  |  |  |
| Leal-Cerro et                           | 170              | 10 (5.9)                                | 29 (17.1)              | 11 (6,5)                       | 10 (5.9)               | 42 (24.7)             | 15 (8.8)                 |  |  |  |  |
| al, <sup>10</sup> 2005                  |                  | [2.3-9.3]                               | [11.4-22.7]            | [2.8-10.2]                     | [2.4-9.4]              | [18.2-31.2]           | [4.6-13.1]               |  |  |  |  |
| Agha et al, <sup>19,20</sup><br>2005    | 48               | 5 (10.4)<br>[1.8-19.1]                  | 6 (12.5)<br>[3.1-21.9] | 9 (18.8)<br>[7.7-29.8]         | 1 (2.1)<br>[0-6.1]     | Not reported          | Not reported             |  |  |  |  |
| Schneider et                            | 70               | 7 (10.0)                                | 14 (20.0)              | 6 (8.6)                        | 2 (2.9)                | 25 (35.7)             | 3 (4.3)                  |  |  |  |  |
| al, <sup>21</sup> 2006                  |                  | [3.0-17.0]                              | [10.6-29.4]            | [2.0-15.1]                     | [0-6.8]                | [24.5-46.9]           | [0-9.0]                  |  |  |  |  |
| Tanriverdi et al. <sup>27</sup>         | 52               | 17 (32.7)                               | 4 (7.7)                | 10 (19.2)                      | 3 (5.8)                | 26 (50.0)             | 5 (9.6)                  |  |  |  |  |
| 2006                                    |                  | [19.9-45.4]                             | [0.5-14.9]             | [8.5-29.9]                     | [0 12.1]               | [36.4-63.6]           | [1.6-17.6]               |  |  |  |  |
| Hermann et                              | 76               | 6 (7.9)                                 | 13 (17.1)              | 2 (2.6)                        | 2 (2.6)                | 18 (23.7)             | 5 (6.6)                  |  |  |  |  |
| al, <sup>25</sup> 2006                  |                  | [1.8-14.0]                              | [8.6-25.6]             | [0-6.2]                        | [0-6.2]                | [14.1-33.2]           | [1.0-12.2]               |  |  |  |  |
| Klose et al. <sup>29</sup>              | 104              | 16 (15.4)                               | 2 (1.9)                | 5 (4.8)                        | 2 (1.9)                | 16 (15.4)             | 6 (5.8)                  |  |  |  |  |
| 2007                                    |                  | [8.5-22.3]                              | [0-4.6]                | [0.7-8.9]                      | [0-4.6]                | [8.5-22.3]            | [1.3-10.3]               |  |  |  |  |

| Harald Jörn Schneider, MD            | Hypothalamopituitary Dysfunction                                           |
|--------------------------------------|----------------------------------------------------------------------------|
| Ilonka<br>Kreitschmann-Andermahr, MD | Following Traumatic Brain Injury<br>and Aneurysmal Subarachnoid Hemorrhage |
| Ezio Ghigo, MD                       | A Systematic Review                                                        |
| Günter Karl Stalla, MD               | JAMA. 2007;298(12):1429-1438                                               |
| Amar Agha, MD                        | JAIVIA. 2007,230(12):1429-1430                                             |

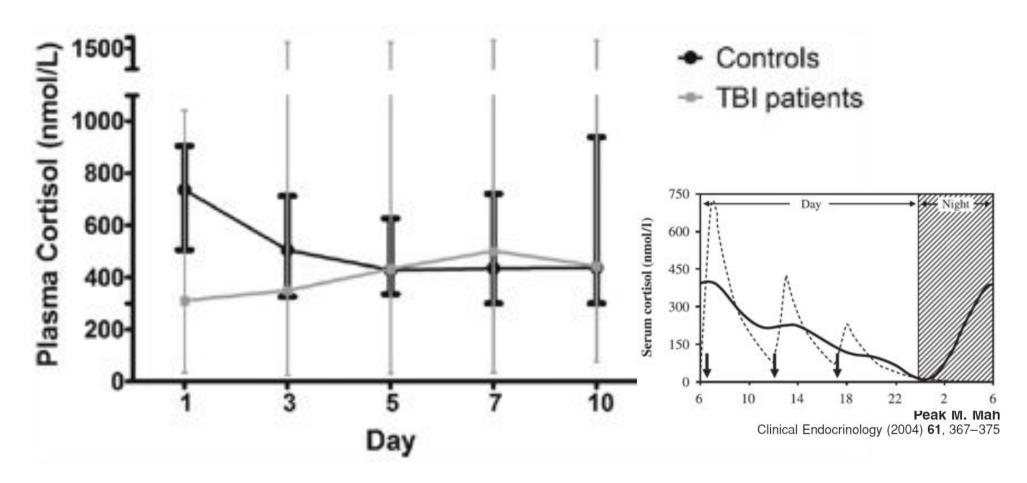

| Study                                            | No.<br>of<br>Patients | Growth<br>Hormone | LH/FSH        | Adrenocorticotropic<br>Hormone | Thyroid-<br>Stimulating<br>Hormone |
|--------------------------------------------------|-----------------------|-------------------|---------------|--------------------------------|------------------------------------|
|                                                  |                       |                   |               |                                |                                    |
| Agha et al. 19,30 2005                           | 50                    | Cortisol after    | GST <450nmc   | ol/l 8                         | 1                                  |
| Tanriverdi et al,22 2006                         | 52                    | Cortisol b        | asal < 194nmc | ol/l 5                         | 3                                  |
| Total No.                                        | 102                   | 19                | 60            | 13                             | 4                                  |
| Total %                                          | 100                   | 18.6              | 58.8          | 12.7                           | 3.9                                |
|                                                  |                       |                   | 31            | Months                         |                                    |
| Aimaretti et al,14 2005                          | 70                    | 16                | 12            | 6                              | 4                                  |
| Schneider et al, <sup>21</sup> 2006              | 78                    | 7                 | 24            | 15                             | 6                                  |
| Total No.                                        | 148                   | 23                | 36            | 21                             | 10                                 |
| Total %                                          | 100                   | 15.5              | 24.3          | 14.2                           | 6.8                                |
|                                                  |                       |                   | 61            | Months                         |                                    |
| Agha et al, <sup>19,90</sup> 2005 <sup>a</sup>   | 48                    | 6                 | 11            | 9                              | <u></u> 1                          |
| Total %                                          | 100                   | 12.5              | 22.9          | 18.8                           | 2.1                                |
|                                                  |                       |                   | 12            | Months                         |                                    |
| Agha et al, 19,20 2005 <sup>D</sup>              | 48                    | 5                 | 6             | 9                              | 1                                  |
| Tanriverdi et al,22 2006°                        | 52                    | 17                | 4             | 10                             | 3                                  |
| Aimaretti et al,14 2005 <sup>d</sup>             | 70                    | 14                | 8             | 5                              | 4                                  |
| Schneider et al, <sup>21</sup> 2006 <sup>®</sup> | 70                    | 7                 | 14            | 6                              | 2                                  |
| Total No. <sup>1</sup>                           | 240                   | 43                | 32            | 30                             | 10                                 |

Table 5. Prospective Studies of Anterior Pituitary Function After Traumatic Brain Injury

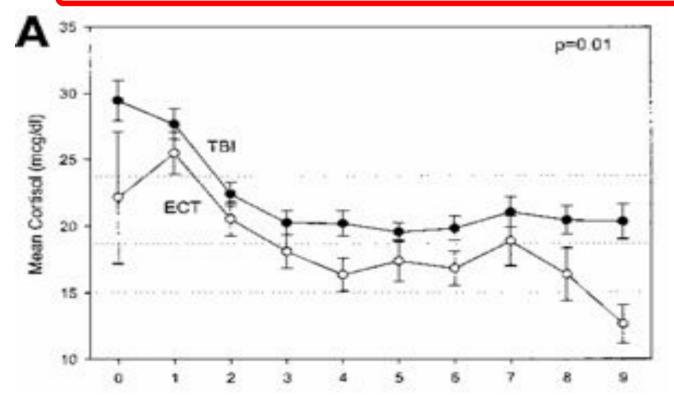
| Harald Jörn Schneider, MD            | Hypothalamopituitary Dysfunction                                           |
|--------------------------------------|----------------------------------------------------------------------------|
| Ilonka<br>Kreitschmann-Andermahr, MD | Following Traumatic Brain Injury<br>and Aneurysmal Subarachnoid Hemorrhage |
| Ezio Ghigo, MD                       | A Systematic Review                                                        |
| Günter Karl Stalla, MD               | JAMA. 2007;298(12):1429-1438                                               |
| Amar Agha, MD                        | JAIVIA. 2007,290(12).1429-1450                                             |



Amar Agha, MD,<sup>a</sup> Jack Phillips, Christopher J. Thompson, MD<sup>a</sup> The natural history of post-traumatic hypopituitarism: Implications for assessment and treatment The American Journal of Medicine (2005) 118, 1416.e1-1416.e7



- 100 Patients after traumatic brain injury (TBI)
  - mean GCS 8.6, 33yrs, mortality 19%
- vs. 15 Controls
  - patients after aortic surgery, 68yrs
- Cortisol levels between 8 and 9 am


M. J. Hannon, R. K. Crowley, L. A. Behan, E. P. O'Sullivan, M. M. C. O'Brien, M. Sherlock, D. Rawluk, R. O'Dwyer, W. Tormey, and C. J. Thompson

#### Acute Glucocorticoid Deficiency and Diabetes Insipidus Are Common After Acute Traumatic Brain Injury and Predict Mortality

J Clin Endocrinol Metab, August 2013, 98(8):3229-3237

|                    |          | ECT           |      | TBI          |  |
|--------------------|----------|---------------|------|--------------|--|
| No. of subjects    | 41       |               | 80   |              |  |
| Age, yrs           | 41<br>25 | (21, 45)      | 29   | (21, 49)     |  |
| Male sex, n (%)    | 35       | (85)          | 65   | (81)         |  |
| ISS                | 24       | (16, 25)      | 26   | (24, 34)     |  |
| GCS, mean (%)      |          |               |      | 233 - 53     |  |
| 14-15              | 41       | (100)         | 0    |              |  |
| 9-13               | 0        | 1.220.22      | 23   | (29)         |  |
| 3-8                | 0        |               | 57   | (71)         |  |
| Days in ICU        | 4.0      | (3,7)         | 6.0  | (4, 9)       |  |
| Cortisol, µg/dL    |          | 0.0210-00     |      | 1.11         |  |
| Daily mean         | 17.9     | (15.3, 22.6)  | 21.7 | (18.6, 26.2) |  |
| Morning mean       | 17.1     | (15.1, 22.3)  | 21.8 | (17.4, 26.4) |  |
| Afternoon mean     | 17.7     | (14.2, 24.4)  |      | (17.0, 26.0) |  |
| Afternoon-morning" | 0.77     | 7 (-3.0, 5.5) | 0.19 | (-3.7, 4.0)  |  |

Cortisol levels at 6am and 4pm



Pejman Cohan, MD; Christina Wang, MD; David L. McArthur, PhD, MPH; Shon W. Cook, MD; Joshua R. Dusick, MD; Bob Armin, BS; Ronald Swerdloff, MD; Paul Vespa, MD; Jan Paul Muizelaar, MD, PhD; Henry Gill Cryer, MD; Peter D. Christenson, PhD; Daniel F. Kelly, MD

Acute secondary adrenal insufficiency after traumatic brain injury: A prospective study\*

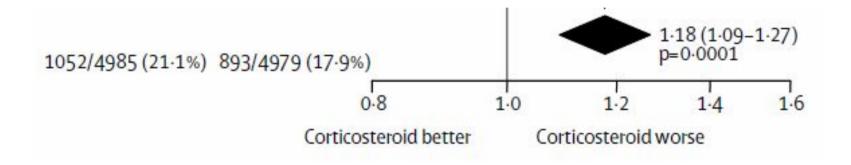
Crit Care Med 2005 Vol. 33, No. 10

|                                           |       | n-Adrenal<br>ufficiency |        | drenal<br>ifficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p Value |                                                                                      |
|-------------------------------------------|-------|-------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------|
| No. of subjects                           | 38    |                         | 42     | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | two     | consecutive cortisol levels <415nmol/l                                               |
| At Time of Injury                         |       | 10.0320.0               | 1223   | 111100111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22253   | one cortisol level < 138nmol/l (n = 13)                                              |
| Age                                       | 40    | (25, 56)                | 26     | (19, 35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .010    |                                                                                      |
| Male sex (%)                              | 33/38 | (86.8)                  | 32/42  | (76.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .26     |                                                                                      |
| GCS (postresuscitation)                   | 7.0   |                         | 6.5    | (3, 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .10     |                                                                                      |
| ISS                                       | 25    | (17, 29)                | 28     | (25, 36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .022    |                                                                                      |
| Early ischemia factors (%)                |       |                         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                                      |
| Hypotension                               | 16/38 | (42.1)                  | 27/42  | (64.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .072    |                                                                                      |
| Hypoxia <sup>b</sup>                      | 7/38  | (18.4)                  | 14/41  | (34.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .13     |                                                                                      |
| Hematocrit <25% <sup>c</sup>              | 7/38  | (18.4)                  | 12/42  | (28.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .31     |                                                                                      |
| Ischemia score (%)d                       |       |                         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .021    |                                                                                      |
| 0                                         | 19/38 | (50.0)                  | 11/41  | (26.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                      |
| 1                                         | 8/38  | (21.1)                  | 12/41  | (29.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                      |
| 2                                         | 11/38 | (29.0)                  | 13/41  | (31.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                      |
| 3                                         | 0/38  | (0.0)                   | 5/41   | (12.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                      |
| CT Findings                               |       |                         |        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                      |
| Abnormal cisterns on CT (%)               | 23/38 | (60.5)                  | 22/42  | (52.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .50     |                                                                                      |
| CT composite score"                       | 2.0   |                         | 2.0    | A Real Property and the second s | .37     |                                                                                      |
| Medications                               |       | 101.47                  | 210    | (01.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.01    |                                                                                      |
| Received etomidate (%)                    | 22/38 | (57.9)                  | 33/41  | (80.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .049    |                                                                                      |
| Received metabolic suppressive agents (%) | 5/38  | (13.1)                  | 11/42  | (26.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .17     |                                                                                      |
| Vasopressor score <sup>g</sup>            |       |                         | 112.12 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                                      |
| Mean                                      | 0.2   | 1 (0.03-0.39)           | 1.0/   | (0.62-1.47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .001    |                                                                                      |
| 50th/75th/90th percentiles                |       | 0.13/0.91               |        | 1.83/2.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .007    |                                                                                      |
| >0 (%)                                    | 13/38 |                         | 24/42  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .047    |                                                                                      |
| Blood Pressure, ICP, CPP                  | 13/30 | (04-6)                  | 54446  | (31.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                                                                      |
| Mean arterial pressure                    |       |                         | 0.000  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                                      |
| Lowest                                    | 63.4  | (60.5-66.3)             | 56.2   | (52.8-59.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .001    |                                                                                      |
| Ever <60 (%)                              | 10/38 | (26.3)                  | 26/42  | (61.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .002    |                                                                                      |
| Mean                                      | 90.1  |                         | 00.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .11     | 1                                                                                    |
| Mean ICP <sup>h</sup>                     | 16.1  |                         | 17.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .66     |                                                                                      |
| Mean CPP <sup>h</sup>                     |       | (68.3-80.4)             | 70.9   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .32     | Pejman Cohan, MD; Christina Wang, MD; David L. McArthur, PhD, MPH; Shon W. Cook, MD; |

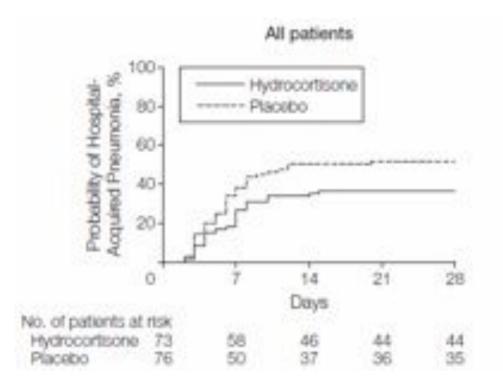
Table 2. Traumatic brain injury (TBI) subject characteristics according to adrenal insufficiency status

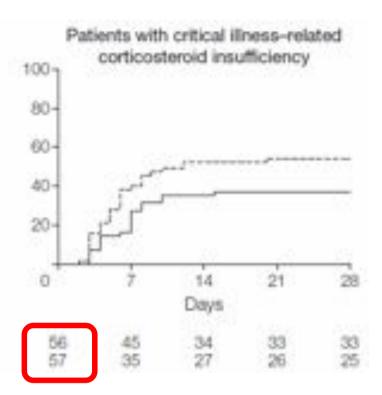
Pejman Cohan, MD; Christina Wang, MD; David L. McArthur, PhD, MPH; Shon W. Cook, MD; Joshua R. Dusick, MD; Bob Armin, BS; Ronald Swerdloff, MD; Paul Vespa, MD; Jan Paul Muizelaar, MD, PhD; Henry Gill Cryer, MD; Peter D. Christenson, PhD; Daniel F. Kelly, MD

Acute secondary adrenal insufficiency after traumatic brain injury: A prospective study\*


Crit Care Med 2005 Vol. 33, No. 10

Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial





CRASH trial collaborators\*

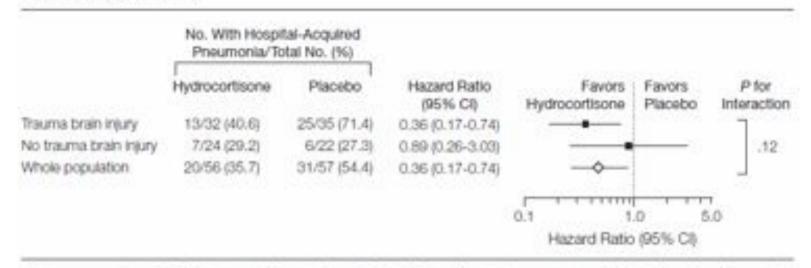
Lancet 2004; 364: 1321-28



- Methylprednisolon:
  - 1g during the first hour
  - 0.4g/h for 48 h
- cumulative 50 000 mg hydrocortisone equivalent per day
  - about 2500 times the endogenous hydrocortisone production in healthy persons






- 149 trauma patients, 84 (56%) with traumatic brain injury
- definition adrenal insufficiency
  - cortisol < 415nmol/l OR</p>
  - cortisol increase 60' after ACTH stimulation < 250nmol/l</li>
- hydrocortisone treatment (started within 36 hours)
  - 200mg/d continously for 5d, 100mg/d on d6, 50mg/d on d7
  - started in all patients, stopped within 48h if no adrenal insufficiency
- definition pneumonia
  - Temp > 38°C, Lc >12 G/I, Lc <4 G/I, purulent pulmonary secretions (2 out of 3) AND</li>
  - cxr with new or changing infiltrate AND
  - culture of BAL >10<sup>4</sup> CFU/ml

Pierre Joachim Mahe, MD Philippe Seguin, MD, PhD Christophe Cuitton, MD Hervé Floch, MD Laurent Merson, MD Benoti Renard, MD Yannick Malledant, MD, PhD Laurent Herson, MD Yannick Malledant, MD, PhD Christelle Volteau Damien Masson, PharmD, PhD Jean Michel Suyten, MD, PhD Karim Aschnoune, MD, PhD

Hydrocortisone Therapy for Patients With Multiple Trauma The Randomized Controlled HYPOLYTE Study

JAMA. 2011;305(12):1201-1209

Figure 3. Patients With Critical Illness–Related Corticosteroid Insufficiency Presenting With Traumatic Brain Injury



Sixty-seven patients had a traumatic brain injury (32 in the hydrocortisone group and 35 in the placebo group); 46 did not have traumatic brain injury (24 in the hydrocortisone group and 22 in the placebo group).

#### Table 2. Secondary Outcomes<sup>a</sup>

|                                                |                            | All Patier          | nts                                             | Patients With Corticosteroid Insufficiency |                            |                     |                                                 |                    |
|------------------------------------------------|----------------------------|---------------------|-------------------------------------------------|--------------------------------------------|----------------------------|---------------------|-------------------------------------------------|--------------------|
| Outcomes                                       | Hydrocortisone<br>(n = 73) | Placebo<br>(n = 76) | Absolute<br>Difference<br>(95% CI) <sup>c</sup> | P<br>Value                                 | Hydrocortisone<br>(n = 56) | Placebo<br>(n = 57) | Absolute<br>Difference<br>(95% CI) <sup>c</sup> | P<br>Value         |
| Hyponatremia ≤130 mmol/L                       | 0                          | 7 (9.2)             | -9 (-16 to -3)                                  | .01                                        | 0                          | 7 (12.3)            | -12 (-18 to -4)                                 | .008               |
| Mechanical ventilation–free days,<br>mean (SD) | 16 (8)                     | 12 (8.5)            | 4 (2 to 7)                                      | .001 <sup>b</sup>                          | 16 (10)                    | 10 (12)             | 6 (2 to 11)                                     | <.001 <sup>b</sup> |
| Length of ICU stay, mean (SD), d               | 18 (15)                    | 24 (16)             | -6 (-11 to -1)                                  | .03 <sup>b</sup>                           | 17 (13)                    | 25 (17)             | -8 (-13 to -3)                                  | .002 <sup>b</sup>  |
| Vasoactive drugs<br>Duration, median (IQR), d  | 2.0<br>(1.0 to 4.0)        | 3.0<br>(0.0 to 5.0) | -1 (-2 to 0)                                    | .64                                        | 2.5<br>(1.0 to 4.0)        | 3.0<br>(1.0 to 5.0) | -2.0<br>(-4.1 to 0.00)                          | .04                |
| Death, No. (%)                                 | 6 (8.2)                    | 4 (5.3)             | 3 (-5 to 11)                                    | .44                                        | 6 (10.7)                   | 3 (5.3)             | 5 (-5 to 15)                                    | .23                |

Antoine Roquilly, MD Pierre Joachim Mahe, MD Philippe Seguin, MD, PhD Christophe Cuitton, MD Hervé Floch, MD Anne Charlotte Tellier, MD Laurent Heron, MD Benoit Renard, MD Yannick Malledant, MD, PhD Laurent Flet, PharmD Veronique Sebille, PhD Christelle Volteau Damien Masson, PharmD, PhD Jean Michel Nguyen, MD, PhD Corinne Lojus, MD, PhD Corinne Lojus, MD, PhD

Hydrocortisone Therapy for Patients With Multiple Trauma

The Randomized Controlled HYPOLYTE Study

JAMA. 2011;305(12):1201-1209

Asehnoune et al. Trials 2011, 12:228 http://www.trialsjournal.com/content/12/1/228

#### STUDY PROTOCOL



**Open Access** 

## Corticotherapy for traumatic brain-injured Patients - The Corti-TC trial: study protocol for a randomized controlled trial

Karim Asehnoune<sup>1,4\*</sup>, Antoine Roquilly<sup>2,4</sup>, Véronique Sebille<sup>3,4</sup> and The Corti-TC trial group<sup>2,4\*</sup>

- 326 patients with traumatic brain injury (GCS < 8)
- Hydro- and fludrocortisone treatment (started within 36 hours)
  - 200mg/d continously for 7d, 100mg/d on d8, 50mg/d on d9 + 50μg Fludrocortison/d for 10d
  - started in all patients, stopped within 48h if no adrenal insufficiency
- Results (unpublished, in review)
  - 86 episodes of HAP were recorded in the steroid group, and 110 episodes in the placebo group (respectively 0.5±0.6 and 0.7±0.7 HAP per patient; P=0.04).
  - no differences in other outcomes including mortality
  - results were not dependent on the adrenal status

## Take home

- definition of hormone deficiency in ICU patients is difficult
- hydrocortisone replacement therapy may be beneficial in patients with TBI regarding the incidence of HAP and hyponatremia
- assessment of complete pituitary function in follow up of patients with TBI is senseful